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Plane Plastic flow of a rigid-plastic body is analyzed. As a coordinate 
system the flow lines and the curves orthogonal to them are selected. The 
analogues of the Hen&y integrals taken along these lines are presented. 
The compatibility equation of the stress and the velocity fields is de- 
rived, and a method of obtaining various solutions corresponding to the 
assumed flow fields which follows from this equation is indicated. The 
relationship between the compatibility equation and the extremal proper- 
ties of a true velocity field is studied, together with certain velocity 
classes for which the flow lines coincide with the slip lines and the 
trajectories of principal stresses. 

1. ‘Ihe plane plastic flow of a rigid-plastic body is described, as is 
well known [ 1,2 I , by the following equations:* 

Let the equations for the 

41 = Ql (x, Y) = 

In curvilinear orthogonal 
form (e.g. t3 1): 

2TXl, dv,, i ax + dvx / a?/ 

5, - 6II = av 1: i as - avl, J ay 

flow lines and the orthogonal curves be 

const , Q2 = q2 (x, y) = const (1.2) 

coordinates ql, q2 (1.1) has the following 

& (ff,%l) + & (Hlb,J + $s,, - q$J - 0 22 - 

& W?~,,) +& WA?,) + !$O,, - 5 (J - 0 11 - (1.3) 
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hl - a,# + 4crlg2 = 4k2 

411 + & = 0, 2312 = ___ E 12 
011 - Q?Z El1 - g22 

where oij are stress components in the given coordinate system; k is the 
limiting shear stress; cij are deformation velocity 1 strain rate 1 com- 
ponents; H, and H, are Lamk’s constants. 

The deformation velocity in the ql, qz system satisfies 

(1.4) 

where v is the modulus of the velocity vector. Introduce now new vari- 
ables 

(J = * (~11 + (JZZ), zi} = (J t k cos 26, cr12 = k sin 2j3 
(1.5) 

where p is an angle formed by the velocity vector and the direction of 
the larger principal stress. Thus (1.3), taking into account (1.4) and 

(l.S), can be written as 

Here f(q2) is some function of its argument. ‘Ihe Lam& equation 

(1 .lO) 

should supplement Equations (1.6) to (1.9). 

2. We shall derive now the analogues of Hencky’s integrals for the 
equations along the flow lines and the curves orthogonal to them 

0 +kcos28 = -\(~~+~~+2$~)dq, +q(q2) (2.1) 

o-kcos@ =\c~$~+~$)dq, +r(q,) (2.2) 
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Here F, = sin Z/3, F, = cos Z/3 and are determined by (1.9); q(q2), 
y(ql) are some functions. 

We shall assume in the sequel that the derivatives of the functions 
in the above equations exist and are continuous, Eliminating by differ- 
entiating the function cr from (1.6) and (l.?), we obtain 

(2.3) 

or, considering (1.9) 

Function F in (2.3) and (2.4) is determined from (1.9); moreover 

(2.5) 

Equation (2.4) is the third-order equation relative to H,, H, and 

f (cl& and it represents the compatibility equation for the stress and 
velocity fields, This cm be formulated in the following theorem: 

Theorem. A necessary and sufficient condition for a flow-line field, 
which is determined by the Lam6 constants, having continuous derivatives 

up to third order, to be a true flow-line field is that there exists 

such a function f(q2) which after the substitution of if, and Hz into 
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(2.4) satisfies the compatibility equation identically. 

Note that for dH2/dq, = 0 the compatibility equation in the form 
(2.3) reduces, in view of (1.9) and (l.lO), to an identity. In the case, 
however, when we have simultaneously 

the components of the velocity vector are identically zero. 

For the true flow-line field (2.4) is generally an equation of the 
third order with respect to f(q2). VIhe order of this equation may be re- 
duced to the second. '&is fact permits the solution corresponding to the 
given flow-line field to be found in the following way. 'Ihe function F 
is determined from (1.91, it is then substituted into (2.41, from which, 
in turn, we find f(q2), provided, that the conditions of the theorem are 
satisfied. Next, tan 28 is found from (1.8) and (1.9). Finally o is found 
from (2.1) and (2.2). 

ExarpIe. Consider curvilinear orthogonal coordinates with the Lam; CO- 

efficients 

HI = CI exp (aql + bqz), Ha = 02 exp (aql + bqz) (2.Q 

where O, b and ci are constants. (2.6) represents two families of loga- 
rithmic spirals. From (1.9) we obtain 

tan28 = F=2% C 2b _ d In f 672) 
42 1 (2.7) 

From (2.6) and (2.7) it follows that the compatibility equation is re- 
duced to an ordinary differential equation for f(gz). Thus the conditions 
of the above theorem are fulfilled and the compatibility equation accord- 
ing to (2.3). (2.6) and (2.7) is 

or 

24 dsin 2p 
- - dgz + 

2a dros 2p q dzsin 2e 
CZ d& + cz &$ 

=o (2.8) 

hence 

tn d sin 28 
bm sin 28 + a cos 28 + F dp, = c 

5 cos2p d@ 
qr = r.3 c - bm sin 2@ - a cos 2p 

(2.9) 

map b/n2 
(2.10) 

~II; = - az + pm% - 2 (a~ + pm~~ In (c - a cos ZP - bm sin 2s) + ai l;“;J,,,p P + DI 
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where c and Di are constants: 

(~2 - a2 - b2m2 > 0) 
(2.11) 

(a2 f b2m2 - c2 > 0) 

Because of (1.6) and (2.6) the integral (2.1) taken along the flow 
line is 

o + 2kcql == 11 (qz) (2.12) 

Let us now calculate the integral (2.2) taken along the lines ortho- 

gonal to the flow lines. In doing so we rewrite (2.2), taking into account 

(1.7) and (2.9), in the following form: 

It follows from (2.10) that 

sin 2p dqz = 
cos 2p sin 2p d/3 

c - bm sin 2p - a cos 2p 

Hence 

Zk (a’ + L2m2) 

am s 

4kFcw k (a% - b”m%) 
sin 2P dqa =-= -- a2 + bz,,L2 P + a tn2 + b2n12j In (c - bm sin 28 - a cos 2p)+ 

+ $ (acosq-bmsin28)+ 
2km 

a~,+ b2,,$ (2bc2 - a2b - b3m2) p + D 2 

Thus along the line 91 = const the following is satisfied: 

2kbc 4kbcm 
o--.92- u2 -I- b2m2 B + 

k (a% - b2cm2) 
a (ax + b+r$) ln(c-bmsin28--aaos@)+ 

2km 
+- uz + bZ,,Ld (2bc2 - b 3m2 - a2b) p = y (ql) (2.13) 

From (2.12) and (2.13) it follows that 

; -~ - 2kcql+ e qz + In (c - bm sin 25 - a CDS 28) - 

2km 
-- a2 + b”,,L” (2bc 2-b3m2-aa2b)p+D2 (2.14) 

where p is determined from (2.11). 

From (1.9) it follows that 
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since 

sin 26 dp am 

e - bm sin 23 - a GOS 26 = 2 {uz + b2mz) 
In (e - bm sin 2#3 -a cos Z?$) - 

- 

therefore 

(2.15) 

and thus, according to (1.8) 

c a2 

v = ew be - as + b2Jn2 In (c - bnt sin 28 - a cos 26) -I- 

2abm 
-i- a2 + b2,%2 fj - aql - &~~;‘;;~,i &’ -i- n3-j (2.16) 

The relationships (2.10), (2.14) and (2.16) determine plastic flow 
which corresponds to the flow lines in the form of logarithmic spirals 
(2.16). Such a flow can be visualized in an extrusion of a plastic medium 
through a channel, the walls of which are logarithmic spirals, and the 
tangential stresses along these walls are constant. 

If in the above relations we put (1 = I = 1, b = 0. then Nadai’ s solu- 
tion for the radial flow lines is obtained. 

It is easy to verify that the conditions of the theorem are satisfied 

by the following class of curvilinear coordinates: 

H1 = @’ (91) Y (Y?), Hz = @ (Y,) Y’ (~2) (2.1'7) 

where @fq,) and Nq,) are arbitrary functions having continuous deriva- 

tives up to the third order. The non-admissible coordinates, for example, 

are 

HI = Hz = H = c exp (2mq,q,) (c, 1)L co11st) (Llc;) 

3. Let some flow-line field satisfy the conditions of the theorem. 

Insider some plastic region CA and given flow-line field in it. We shall 

assume that along the contour of o the velocities are given by (1.8): 
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In this case, in view of the well-known theorem of extremal proper- 
ties of a true velocity field [ 1 1 , the function f(q2) must yield the 
minimum of the functional 

which, after integrating along q1 and in view of (1.4) and (1.8), has 
the form 

q>-- 

(3.2) 

with the usual transverse conditions 

[ Q,,l’iz_n = [ Q,,lg,z-,, == 0 (3.3) 

where Q(f) f’, q2) is known. Thus for the determination of f(q2) a direct 
method can be applied. 

4. Consider the case when d H,/dq, = 0. In view of the known relation- 

ships we have 

where a is an angle formed by the tangent of the flow line with a vari- 
able direction; d a/dsi is the curvature of the coordinate lines. Con- 
sequently, according to (4.1)) the fl ow lines are equidistant curves. On 

the other hand, it follows from (1.9) that p = 0 * 77/4, i.e. the flow 
lines coincide with the slip lines. Clearly, the converse is also true. 

‘thus the necessary and sufficient condition for the coincidence of the 
flow lines with slip lines is that the flow lines be equidistant curves; 
clearly the motion of a medium as a rigid body is excluded. 

5. Consider now the case when the flow lines coincide with the direc- 
tions of the principal stresses. Since in this case /3 = 0 f n/2, and be- 

cause of (1.9), we have 

-.L&sO 
f (92) 

(5.4) 

On the other hand (1.6) and (1.7) have the following well-known form: 

(5.2) 

or 

0 + 2k In H, = q (q2), (J - 2k In N, 5 T (q1) (5.3) 
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Hence in view of (5.1) 

$i (+J = In f &J + c (c = const) (54 

‘Ihus if the flow lines coincide with the trajectories of principal 
stresses, then the following is true: 

ln HIHz = In f (q2) -&(%I +c (5.5) 

Obviously, the converse is also true, i.e. (5.5) represents a neces- 
sary and sufficient condition for the coincidence of the flow lines and 
the trajectories of the principal stresses. 

As an example consider an isometric net of the flow lines (or the 
trajectories of the principal stresses). It follows from (1.10) and (5.5) 
in this case that 

(n = con&) (5.6) 

?herefore 

H, = Hz = H.= exp T$ + Cl& - *$- csq1 + CZ)] 

cf = k @l22 -I-2w2 + VI2 +~3!?1 +cd 
(Ci = const) 

v = exp ($%” +$l? +$72+~q1 +c) 

(5.7) 
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